
Abstract

M. Wagner, C. Ponton, R. Tech, M. Fuchs, & J. Kastner (Hamburg, Germany & Charlotte, USA)
Non-Parametric Statistical Analysis of EEG/MEG Map Topographies and Source Distributions on
the Epoch Level
In Event-Related Potential and Event-Related Field experiments, stimuli – often of several different types
– are presented repeatedly, and the subject’s brain response is recorded using Electroencephalography
(EEG) or, in the ERF case, Magnetoencephalography (MEG). After removing artifacts and epoching the
data, many repetitions per stimulus type are available, which are later usually averaged and compared.
At this stage, though, it is no longer possible to establish whether and for which latencies the averaged
waveforms are significantly different between stimulus types, nor whether the epochs for a given stimulus
type yield significant averages in the first place. A statistical analysis of all individual epochs can provide
exactly this information. Topographic Analysis of Variance (TANOVA) and Statistical non-Parametric
Mapping performed on the results of Current Density Reconstructions (CDR SnPM) are non-parametric
permutation or randomization tests which have previously been published but mainly been used to pro-
cess per-subject averaged EEG data in the context of group studies. This paper describes how to apply
TANOVA and CDR SnPM to individual epochs on a sample-by-sample basis, even in the context of
single-subject data. A multiple comparison correction approach for the analysis of subsequent samples
based on spectral properties of the data is presented. Methods are demonstrated using filtered and un-
filtered simulated dipole data and data from a Continuous Performance Task (CPT) EEG experiment
eliciting Mismatch Negativity. While TANOVA is able to identify latencies of significantly different map
topographies, CDR SnPM extracts – per latency – the locations of significant source activation differ-
ences between stimulus types, albeit at the price of reduced overall sensitivity. Using simulated data, the
proposed multiple comparison correction approach is illustrated. Significant peaks and source locations
obtained for the CPT data are consistent with existing knowledge.

Keywords: Electroencephalography, Magnetoencephalography, Event-Related Fields, Event-Related
Potentials, Continuous Performance Task, Statistical Analysis, Randomization Statistics, Non-
Parametrical Statistics, Topographical Analysis of Variance, Current Density Analysis, Statistical non-
Parametric Mapping
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Introduction

In an Event-Related Potential (ERP) or
Event-Related Field (ERF) experiment, an
Electroencephalography (EEG) or Magneto-
encephalography (MEG) device records the brain
response related to a sensory, cognitive, or motor
event. Depending on the experimental design,
events (stimuli or responses) may be of the
same or of different types. Data segments with
distortions such as ocular, cardiac, or muscle
artifacts are later detected and artifacts are ei-
ther reduced or excluded from further processing.
After splitting the data into epochs time-locked
to events, many repetitions per event type are
available and usually averaged and compared.
After averaging, though, it is no longer possible
to establish whether and for which latencies the
averaged waveforms differ significantly between
event types, nor whether the trials (epochs) of
a given type yield significant averages in the

first place. A statistical analysis of all individual
epochs can provide this information.

Traditional statistical measures in channel
space such as the t-test make disputable assump-
tions regarding repeatability and independence
(Murray, Brunet, & Michel, 2008; Koenig &
Melie-García, 2009). Therefore, a new non-
parametric family of methods has recently
attracted attention as it became computationally
feasible for the analysis of ERP group studies
(Murray et al., 2004). Although – misleadingly –
referred to as Topographic Analysis of Variance
(TANOVA, Koenig & Melie-García, 2010), no
analysis of variance is being conducted, but rather
a non-parametric permutation or randomization
test. TANOVA is usually applied to per-subject
averaged data in the context of group studies and
yields similarities within and differences between
groups of subjects.

If distributed source analysis methods such as
Current Density Reconstruction (CDR) are used
to localize the neural generators, the additional
question of where in the brain significantly differ-
ent source topographies occur may be asked. Sta-
tistical non-Parametric Mapping (SnPM) by non-
parametric permutation or randomization tests
using a maximum statistic to control the Family-
Wise Error Rate (FWER) provides an assumption-
free environment to answer this question (Nichols
& Holmes, 2002). In the context of EEG, CDR
SnPM is typically applied to source analysis re-
sults obtained for averaged data in the context of
group studies and used to assess differences be-
tween groups of subjects (J. S. Kim, Han, Park,
& Chung, 2008; Y. Y. Kim et al., 2009).

In this contribution, a framework is described
that allows the application of the existing meth-
ods TANOVA and SnPM not only to individual
averages in the context of an ERP/ERF group
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study but to the individual epochs themselves
(Wagner, 2014), something that is even possi-
ble for single-subject data. Unlike described in
previous publications, the statistical analysis is
conducted sample-by-sample as opposed to using
a maximum statistic over all samples (Pantazis,
Nichols, Baillet, & Leahy, 2003; R. E. Greenblatt
& Pflieger, 2004), thus following the approach
presented by (Koenig & Melie-García, 2009) for
group data, but using a multiple comparison cor-
rection that is based on the spectral properties
of the data. For CDR SnPM, in addition to
the test for significant differences between condi-
tions, a within-condition consistency test is pro-
posed which can be used to justify testing for
differences on a sample-by-sample basis. Stan-
dardized Low Resolution Electromagnetic Tomog-
raphy (sLORETA) in a realistically shaped head
model is employed for source localization, be-
cause it yields low localization error for focal activ-
ity, uniform spatial sensitivity, and is robust with
respect to regularization (Pascual-Marqui, 2002;
Wagner, Fuchs, & Kastner, 2004).

A simulation study is used to validate the imple-
mentation, and a visual Continuous Performance
Task (CPT) EEG experiment eliciting Mismatch
Negativity (MMN) is used to demonstrate the
methods. The following Methods section is or-
dered by data acquisition and processing steps.
However, the simulation study is described last,
as it builds upon methods described previously.

Methods

Visual Continuous Performance Task
Experiment

The numbers “1” and “2” were used as visual stim-
uli. In a visual CPT paradigm, “1” was used as the
target stimulus and “2” as the distractor stimulus.
The subject, a healthy adult, had EEG electrodes
attached while watching the presentation of stim-
uli on a computer screen. 31 EEG electrodes
were placed according to an extended 10-20 sys-
tem with additional FPz, FCz, CPz, Oz, FC3/4,
CP3/4, FT7/8, and TP7/8 contacts (Fig. 1).
The stimulus duration was 200ms, with a ran-
domized inter-stimulus interval (ISI) of between
800 ms and 1300 ms. 41 target and 165 distractor
stimuli were presented in randomized order using
the STIM system (Compumedics, Charlotte, NC,
USA). The subject was instructed to press a but-
ton following the presentation of each target stim-
ulus. EEG and VEOG data were recorded using
a 32-channel Neuroscan system (Compumedics,
Charlotte, NC, USA) with a sampling frequency
of 250 Hz and a high-pass filter of 0.15Hz.

Signal processing was performed in the Curry 7
software (Compumedics, Charlotte, NC, USA).
Data were re-referenced to a Common Average
Reference (CAR), because the subsequently ap-
plied statistical and source analysis methods re-
quire CAR data, and filtered using a 40 Hz low-
pass filter. Eye blink effects were reduced using
a regression analysis in combination with artifact
averaging (Semlitsch et al., 1986). Data were
epoched from 200 ms before to 500ms after stim-
ulus onset (Fig. 1). Epochs with signals exceeding
±30 µV were excluded, since a visual inspection
of the common average referenced epochs showed
that signals of this magnitude were likely due to
artifact. Averages for both stimulus types were
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computed (Fig. 2). In the following, this dataset
will be referred to as the low-pass filtered CPT
data. In order to explore the effects of filtering
on the statistics outcome, data were alternatively
processed and epoched without any additional fil-
tering besides the 0.15 Hz data acquisition filter,
and with a high-pass of 1Hz, 2 Hz, and 3Hz in
addition to the 40 Hz low-pass. To investigate
statistics outcome for reduced epoch counts, de-
rived versions of the low-pass filtered CPT data
with only 75%, 50%, and 25 % of the total num-
ber of epochs were created. These three new,
decimated datasets were obtained by excluding
every fourth or every second epoch, or retaining
only every fourth epoch, respectively.

Topographic Analysis of Variance

In the context of a TANOVA, two different non-
parametric randomization tests were performed
for all epochs: a consistency test per event type,
and a test for differences between event types.
Both tests were already described in (Koenig &
Melie-García, 2010) and are summarized here for
reference only.

The consistency test evaluates field topography
(map) similarity across epochs. It is performed in-
dependently for each event type and each sample.
Here, the Null Hypothesis is that epochs of the
same event type are unrelated, i.e. that random
maps have been measured. If the Null Hypothesis
holds, randomly perturbing channels within each
epoch’s maps should not deteriorate the average
map across all epochs.

For each sample s and Ec epochs of event type
c, the test is performed as follows: First, the ob-
served mean global field power (MGFP) Ps,c,0 of
the average over all epochs e of the individual
maps ds,c,e is computed as

Ps,c,0 = mgfp
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where M is the number of channels. Then, for
a total of R repetitions, the channels within each
map are randomly shuffled or perturbed. Typ-
ically, perturbation is used if the total number
of perturbations is computationally feasible, while
randomization is used in all other scenarios, in-
cluding most real-world applications. For each
repetition r, this yields new randomized maps
ds,c,e,r, and a new global field power Ps,c,r can be
computed according to

Ps,c,r = mgfp
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Â
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!
. (2)

The probability ps,c of the Null Hypothesis is
the fraction of values Ps,c,r that are larger than
or equal to Ps,c,0. Small values of p, traditionally
p < 0.05, indicate rejection of the Null Hypothe-
sis, or consistency between epochs of the same
event type. The number of possible permuta-
tions is M! (Nichols & Holmes, 2002) and must be
larger than the number of randomizations, which
is typically the case for 8 and more channels.

The test for differences between event types
is again performed independently for each sam-
ple. Here, the Null Hypothesis is that there is
no difference between event types, i.e. that the
same maps occur regardless of event type. If the
Null Hypothesis holds, randomly perturbing maps
across event types should not alter the average
maps per event type.

When just two event types are compared, the
MGFP of the difference of the averaged maps per
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Figure 1: A 10 s page of ongoing EEG data re-referenced to CAR, with stimulus types at the top, where
“1” stands for target and “2” represents distractor stimuli. Latency ranges marked in gray were used for
epoching, from 200 ms pre- to 500 ms post-stimulus onset.

event type can serve as the measure. For each
sample, the test is performed as follows: In a first
step, the observed global field power Ps,0 of the
difference of the averages over all epochs of event
types c = 1 and c = 2 is computed as

Ps,0 = mgfp
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For R repetitions, maps are then randomly shuf-
fled across event types. For each repetition r, ran-
domized maps ds,c,e,r are obtained and the global
field power Ps,r can be computed according to

Ps,r = mgfp
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Again, the probability ps of the Null Hypoth-
esis is the fraction of values Ps,r that are larger
than or equal to Ps,0. Small values of p indicate
significant map differences between event types.

Because an omnibus measure of map similarity
has been used, no correction for multiple testing
is necessary. The number of possible permuta-
tions, which again must be larger than the num-
ber of randomizations, is (E1+E2)!/E1!·E2! (Nichols
& Holmes, 2002), which is typically the case for
8 and more epochs per type.

As both the consistency test and the difference
test are performed sample by sample, false pos-
itives are to be expected. A test for the signif-
icance of consecutive rejections of the Null Hy-
pothesis can establish, whether such periods of
significance are significant themselves and is de-
scribed in Koenig and Melie-García (2009).

Optionally, data may be collapsed across sam-
ples of interest to increase the Signal-to-Noise
Ratio (SNR). Averaged maps may be normalized
before computing the difference, in order to ig-
nore absolute effect sizes. An extension to more
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Figure 2: Butterfly plots of the average waveforms (left) and voltage topography maps for the 300 ms
latency (right) for both stimulus types.

than two and to different categories of event types
using a measure called global dissimilarity is de-
scribed in Murray et al. (2008). TANOVA com-
putation times scale linearly with the number of
samples, number of randomizations, and number
of channels.

TANOVA analysis was performed using the
Curry software. For this paper, values of p < 0.05
were regarded as significant. As suggested by
Manly (2006), the corresponding required number
of repetitions was chosen to be R = 50/p = 1000.
Map normalization was used for the difference
tests, such that the MGFP per map was equal
to 1. The complete time range from -200ms to
500 ms was analyzed for the differently filtered
and decimated data sets.

Source Analysis

A standardized Low Resolution Electromagnetic
Tomography (sLORETA) analysis (Pascual-
Marqui, 2002; Wagner et al., 2004) was per-
formed for each sample of every epoch. As
the head model, a realistically shaped three-
compartment Boundary Element Method (BEM)
model comprising 8043 nodes and 16074 tri-
angles was used (Fuchs, Wagner, & Kastner,
2001). Conductivities were assumed to be 0.33,
0.0132, and 0.33 S/m for the skin, skull, and
brain compartment, respectively. Source loca-
tions were distributed on a 7 mm regular grid
throughout the brain but excluding the cere-
bellum, yielding a total of N = 4786 locations.
The regularization parameter was determined
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according to the discrepancy principle (Fuchs,
Wagner, Köhler, & Wischmann, 1999) using an
sLORETA analysis of the grand average of all
epochs and subsequently kept fixed throughout
the individual epoch analyses.

For the remainder of this paper, the resulting
source strength distribution for sample s, event
type c, and epoch e will be referred to as a source
image Is,c,e and each source location will be re-
ferred to as a voxel n, with is,c,e,n the source in-
tensity at that particular voxel. In spite of this
notation, the concept of a voxel readily general-
izes to cases where sources are computed on the
folded cortical surface only (Wagner, Fuchs, Wis-
chmann, Ottenberg, & Dössel, 1995).

Statistical non-Parametric Mapping

The input data for SnPM can be CDR source im-
ages, but also beamformer results or voltage to-
pographies (R. E. Greenblatt & Pflieger, 2004).
In this case, sLORETA source images are used,
which have the property to be normalized to
the standard deviation per voxel (Pascual-Marqui,
2002). As a consequence, using sLORETA im-
ages as input data for SnPM yields uniform spa-
tial sensitivity of the statistical test (Pantazis et
al., 2003). As for TANOVA, a consistency test
per event type and a test for differences between
event types can be performed.

The consistency test evaluates source image
similarity across epochs. It is performed indepen-
dently for each event type and each sample. Here,
the Null Hypothesis is that epochs of the same
event type are unrelated, i.e. that random source
images have been computed. If the Null Hypothe-
sis holds, randomly perturbing voxels within each
epoch’s source image should not deteriorate the
average source image across all epochs.

For each sample s and event type c, the test is
performed as follows: First, for each voxel n, a t-
value is obtained using a one-sample t-test. This
t-value ts,c,n,0 scores the hypothesis that the mean
voxel intensity across all Ec source images is zero
(a zero-centered distribution of the positive voxel
intensities can be created by normalization and
log-transformation, both of which are described
further below):

ts,c,n,0 =
is,c,⇤,n

s(is,c,⇤,n)/
p

Ec
. (5)

Then, for a total of R repetitions, the voxels
within each source image are randomly shuffled.
For each repetition r, this yields new randomized
source images Is,c,e,r, and new t-values ts,c,n,r can
be computed according to

ts,c,n,r =
is,c,⇤,r,n

s(is,c,⇤,rn,)/
p

Ec
. (6)

The standard deviation (SD) s used for com-
puting the t-values in equations 5 and 6 is spe-
cial in that it is additionally spatially smoothed
as described in Nichols and Holmes (2002). This
smoothing may be performed by simply taking
the average across all voxels, or alternatively us-
ing a smoothing kernel. After randomization,
a significance threshold ts,c is computed as the
(1� p) ·100th percentile across repetitions, based
on the largest t-values across all voxels per rep-
etition. This maximum t-statistic controls the
FWER and is a means of multiple comparison cor-
rection across voxels (Westfall & Young, 1993).
For all voxels with ts,c,n,0 < ts,c the Null Hypoth-
esis is confirmed, while for all other voxels con-
sistency across epochs has been established. To
visualize the locations-of-consistency, a t-statistic
image can be generated based on ts,c,n,0 where val-
ues of t below the significance threshold are set
to zero.
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The test for differences between event types is
again performed independently for each sample.
Here, the Null Hypothesis is that there is no dif-
ference between event types, i.e. that the same
source images occur regardless of event type. If
the Null Hypothesis holds, randomly perturbing
source images across event types should not alter
the average source images per event type.

For each sample s, the test is performed as fol-
lows: First, an F -test is performed using a one-
way Analysis of Variance (ANOVA) for each voxel
n where the event types c are regarded as factors
(Maxwell & Delaney, 2004). The F -value Fs,n,0

thus obtained measures the hypothesis that the
voxel means of all Ec source images per event type
are equal. For R repetitions, source images are
then randomly shuffled across event types. For
each repetition r, randomized source images Is,c,e,r

are obtained and F -values Fs,n,r can be computed
per voxel. Next, a significance threshold Fs is
computed as the (1� p) ·100th percentile across
repetitions, based on the largest F -values across
all voxels per repetition (maximum F -statistic).
For all voxels with Fs,n,0 < Fs the Null Hypothe-
sis is confirmed, while for all other voxels it has
been established that they are significantly differ-
ent. To visualize the locations of significance, an
F -statistic image can be generated based on Fs,n,0

where values of F below the significance thresh-
old are set to zero. Because a global measure
of source image difference has been used, no fur-
ther correction for multiple testing across voxels
is necessary. While the F -test per se is known to
be non-robust against deviations from normality,
in the context of SnPM it is only the ordering of,
not the absolute F values, that determine signif-
icance.

Again, a test for the significance of consec-
utive rejections of the Null Hypothesis can be

performed (Koenig & Melie-García, 2009). Op-
tionally, data may be collapsed across samples
of interest to increase the SNR. Source images
may be normalized and/or log-transformed be-
fore entering the calculations. Normalization al-
lows comparing relative as opposed to absolute
source magnitudes. A log-transformation can
make the distribution of the (always positive)
voxel intensities more symmetric and – if voxel in-
tensities have previously been normalized so that
their sum-of-squares equals the number of vox-
els – zero-centered. Neither normalization nor
log-transformation are strictly required for CDR
SnPM, though, as non-parametric statistics per se
are robust with respect to unknown or skewed dis-
tributions (Nichols & Holmes, 2002). An exten-
sion to different categories of event types is possi-
ble using ANOVA for multiple factors (Maxwell &
Delaney, 2004). CDR SnPM computation times
scale linearly with number of samples, number of
randomizations, and number of source locations.

CDR SnPM analysis was performed using the
Curry software. Again, values of p < 0.05 were
regarded as significant, with R = 1000 the num-
ber of repetitions. Source distribution normal-
ization and log-transformation were used and
s -averaging was applied. Again, all of the differ-
ently filtered and decimated data sets were pro-
cessed.

Multiple Comparison Correction

Neither TANOVA nor CDR SnPM per se require
a multiple comparison correction across sensors
or voxels, because complete voltage topography
maps are used for TANOVA and a maximum
statistic is employed in CDR SnPM. However,
both methods are performed for each sample and
neighboring samples yield to multiple compar-
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isons, if the spectral content of the data is im-
paired by low-pass filtering or otherwise limited.

To assess the number of independent com-
parisons n that occur due to low-pass filter-
ing the data but still analyzing each sample,
one should keep in mind that, according to the
Nyquist–Shannon sampling theorem, after filter-
ing using a cutoff frequency of fc, data may be
resampled at 2 fc without losing information. If
the original sampling frequency is fs, there are
fs/2 fc ways to perform this resampling depending
on which out of fs/2 fc samples is picked as the first
sample. This ratio equals the number of com-
parisons n to consider when analyzing low-pass
filtered data sample by sample:

n = fs/2 fc. (7)

The corresponding multiple comparison-
corrected significance level a using the Šidák
correction is

a = 1� (1� ā)
1/n = 1� (1� ā)

2 fc/fs (8)

with ā the experiment-wide significance level.
As a consequence, for the analysis of the low-

pass filtered data sets with fc = 40Hz and ā =

0.05, a corrected significance threshold of a =

0.0163 was used, including an adapted number of
repetitions R = 50/a = 3071.

Simulated Data

In order to test the statistical methods, an ad-
ditional simulated dataset was created, using
the same electrode layout, sampling rate, pre-
stimulus and post-stimulus times as described
above for the CPT experiment. This dataset com-
prised 100 epochs each of two different types.
One epoch type (“dipole + noise”) was created by
simulating a current dipole source in the postcen-
tral gyrus, 15 mm beneath the inner skull layer of

the same realistic BEM head model as described
above (Fig 3). Its dipole moment was modeled to
be zero before 0 ms and linearly rise to 100 µAmm
at 500 ms. The second epoch type (“noise”) con-
tained zero data. White Gaussian noise with
a standard deviation of 10 µV was added to all
epochs. A second version of this simulated data
set was obtained by applying a low-pass filter with
fc = 10Hz. For the statistical analyses described
above, values of p< 0.05 were regarded as signifi-
cant, the number of repetitions was R= 1000, and
a corrected significance threshold of a = 0.0041
according to Eq. 8 was used for fc = 10Hz, with
the corresponding adapted number of repetitions
R = 12210.

In order to independently assess the TANOVA
results for this simulated dataset, the time-varying
SNRs for the first principal component (Hastie,
Tibshirani, & Friedman, 2009) of the averaged
“dipole + noise” epochs was plotted and laten-
cies with an SNR< 1 were marked as insignifi-
cant. The first principal component was chosen
because it represents the simulated dipole topog-
raphy in this case where the simulated dipole is
clearly large enough to dominate the noise. Before
applying Principal Component Analysis (PCA),
data were SNR-transformed (whitened) by mul-
tiplication with the inverse standard deviation of
the noise, estimated from the signal-free laten-
cies before 0 ms (R. Greenblatt, 1995; Fuchs et
al., 1998).

Results

For the averaged “dipole + noise” epochs of the
simulated dataset, the estimated standard devia-
tion of the noise was snoise = 1 µV. For the low-
pass filtered version, snoise = 0.231µV.

For the low-pass filtered CPT data set, after
excluding epochs with signals exceeding ±30 µV,
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Figure 3: Simulated dipole location (top left), butterfly plot of the average “dipole + noise” waveforms
(lower left) and voltage topography map for the 300 ms latency (right).

166 epochs remained: 34 of type “target” and 132
of type “distractor”. Epoch counts for all other
data sets derived from the CPT data are listed in
the upper rows of Table 1. Data were subjected to
TANOVA and sLORETA-based SnPM analyses.

Topographic Analysis of Variance

For the simulated dataset, the TANOVA con-
sistency test (Fig. 4) established consistency of
the “dipole+noise” epochs for all latencies after
84 ms, with additional, shorter periods of consis-
tency from 60 to 64 ms and from 72 to 76 ms,
as well as from -12 to -8 ms. Single significant
samples failed the test for significance of contigu-
ous rejections of the Null hypothesis, which in
this case required a minimum of two samples.
The “noise” epochs yielded no significant peri-
ods of consistency but a total of 9 isolated sam-
ples with p < a. For comparison, the number of
false positives to be expected is a times the num-

ber of samples which equals 0.05 ·176 = 8.8. The
TANOVA test for differences between epoch types
was satisfied from 92ms onwards with the excep-
tion of the 129 ms sample. Again, two or more
consecutively significant samples were required to
establish significance of contiguous samples, and
as a consequence 7 significant samples were re-
jected, including the 84ms sample. The first prin-
cipal component, when represented in SNR units,
had an SNR � 1 from 84 ms on.

In the case of the low-pass filtered CPT dataset,
the TANOVA consistency test for the target stim-
uli yielded periods of consistency from -88ms to
-72 ms, from 60ms to 68ms and from 132 ms
to 500 ms, with a total of 101 significant sam-
ples. For the distractors, consistency periods oc-
curred from -140ms to -112ms, from -80ms to -
68 ms, from -56ms to 120ms, and from 132 ms to
500 ms. The total number of significant samples
was 150. The test for differences between targets
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Figure 4: TANOVA results for the unfiltered simulated dataset. Red waveforms are p-Values depicted in
a logarithmic scale, and white areas indicate significance, with p < a. Short hatched gray areas indicate
significance but failure to establish significance of consecutive rejections. The significance level a = 0.05
is visualized as a horizontal red dotted line. Rows 1 and 2 show consistency test results for “dipole+noise”
and “noise” epochs, respectively. Black waveforms are MGFPs of the average per event type, scaled
equally. Row 3 shows differences between epoch types. Row 4 shows the SNR of the first principal
component. Here, white areas mark SNRs � 1. Numbers in the upper right corners of each waveform are
the numerical values of that waveform for the 300 ms time point, indicated by a dotted vertical line.

and distractors yielded significance latencies from
164 ms to 184ms, 204 ms to 380 ms, and 436ms
to 452 ms, and a total of 57 significant samples.
A single significant sample at -76 ms was rejected
because two or more contiguously significant sam-
ples were required to establish significance of con-
secutive rejections of the Null hypothesis. The
results are shown in Fig. 5, and the number of sig-
nificant samples is also presented in the TANOVA

rows of Table 1. The computation time for the
TANOVA tests with 3071 randomizations each for
31 EEG channels and 166 epochs, performed for
all 176 samples per epoch at 250Hz was 18 sec-
onds on a 2.3 GHz Core i7-4850HQ CPU.
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Figure 5: TANOVA results for the 40 Hz low-pass filtered CPT dataset. Red waveforms are p-Values
depicted in a logarithmic scale, and white areas indicate significance, with p < a. Short hatched gray
areas indicate significance but failure to establish significance of consecutive rejections. The significance
level a = 0.0163 is visualized as a horizontal red dotted line. Rows 1 and 2 show consistency test results
for target and distractor stimuli, respectively. Black waveforms are MGFPs of the average per stimulus
type, scaled equally. Row 3 shows differences between targets and distractors. Numbers in the upper right
corners of each waveform are the numerical values of that waveform for the 300 ms time point, indicated
by a dotted vertical line.

Statistical non-Parametric Mapping

For the simulated dataset, consistency of the
“dipole+noise” sLORETA results could be estab-
lished for latencies from 180 ms on, with the ex-
ception of the 188ms, 192 ms, and 204 ms sam-
ples. Single significant samples were rejected by
the test for significance of contiguously significant
samples, which required a minimum of two sam-
ples. The “noise” epoch consistency test failed,
with a total of four single-sample false positives
rejected. The test for differences of sLORETA
results between epoch types yielded latencies of
196 ms and later, except for the 204ms, 224ms,

and 228 ms samples. Results are shown in Fig. 6.
The locations of significantly different activity be-
tween epoch types are illustrated in Fig. 7 for the
300 ms latency, with differences in the postcentral
gyrus area and in the frontal lobes.

In the case of the low-pass filtered CPT dataset,
the SnPM consistency tests established consis-
tency (Null Hypothesis rejected for at least one
voxel) for the target stimuli at a total of 139 out
of 176 samples (-200 to -192 ms, -180 to -164 ms,
-152 to -108 ms, -88 to -40ms, -32 to 56 ms, 64
to 84 ms, 108 to 244ms, 264 to 384 ms, 396 to
400 ms, 452 to 472ms, 480 to 488ms), and for
the distractor stimuli at all samples. The test for
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Figure 6: CDR SnPM results for the unfiltered simulated dataset. Red waveforms are p-Values depicted in
a logarithmic scale, and white areas indicate significance, with p < a. Short hatched gray areas indicate
significance but failure to establish significance of consecutive rejections. The significance level a = 0.05
is visualized as a horizontal red dotted line. Rows 1 and 2 show consistency test results for target and
distractor stimuli, respectively. Black waveforms are the maximum t-values, scaled equally. Row 3
illustrates differences between targets and distractors. Here, the black waveform represents maximum
F-values. The numbers in the upper right corners of each waveform are the numerical values of that
waveform for the 300 ms time point, indicated by a dotted vertical line.

differences between targets and distractors yielded
significant latencies (Null Hypothesis rejected for
at least one voxel) from 172 ms to 180ms, 228 ms
to 244 ms, and 276 ms to 336 ms. Single signifi-
cant samples at 148ms and 344 ms were rejected
because two or more contiguously significant sam-
ples were required to establish significance of con-
secutive rejections of the Null hypothesis. Results
are presented in Fig. 8, and the number of sig-
nificant samples is also presented in the SnPM
rows of Table 1. Fig. 9 shows the spatial distri-
bution of F -values above the significance level for
the 300 ms time point, highlighting frontocentral
and posterior right hemisphere differences. While

the cerebellum was excluded from source anal-
ysis, some source symbols visually overlap with
cerebellar areas due to the 7 mm resolution of
the sLORETA source space. The computation
of sLORETA CDR results for all epochs and sam-
ples took 40 seconds. Computation times for the
CDR SnPM tests for all epochs and samples and
3071 randomizations were 33 minutes, of which
7 minutes and 10 seconds were used for the CDR
SnPM difference analysis.
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Figure 7: CDR SnPM F-values for the unfiltered simulated dataset. Thumbnails show template MRI
slices ordered from top to bottom, with labels indicating axis orientations where A represents anterior,
P posterior, L left, and R right. Red-yellow colored overlays are the significance-thresholded F-value
image for the 300 ms latency.

Different Filter Frequencies and Epoch
Counts

For the simulated dataset, Fig. 10 shows a com-
parison of the TANOVA and CDR SnPM differ-
ence tests already summarized above with results
for a version of the dataset low-pass filtered at
10 Hz. While for the unfiltered dataset, significant
TANOVA differences start at 92 ms, the filtered
dataset yields significant differences already from
28 ms onwards. Both latencies are in line with the
PCA results, where the SNR of the first principal
component representing the simulated dipole map
rises above one at 84 ms and 28 ms, respectively.
The CDR SnPM differences show less sensitivity
with significance established at 196ms and 88 ms,
respectively.

The results of submitting differently filtered
versions of the CPT dataset to TANOVA and
CDR SnPM difference tests are shown in Fig. 12.

The second row of these figures represents the
same 40 Hz low-pass filtered dataset that was
characterized above and presented in Figs. 5
and 8. Table 1 summarizes the number of sig-
nificant samples for both tests. For high-pass
filter frequencies of 2 Hz and 3Hz, the number
of significant samples is reduced for the CDR
SnPM tests (Fig. 11a). The impact of filtering
on the TANOVA results is smaller compared to
CDR SnPM. For the less-filtered data, more pre-
stimulus samples are significant. Significant dif-
ferences for the 300 ms latency cannot be de-
tected for the 3 to 40Hz-filtered dataset.

Reducing the number of epochs yields the re-
sults shown in Fig. 13 (here the top row repre-
sents the same dataset as in Figs. 5 and 8), as
well as in Table 1. For only 42 epochs, the overall
number of significant samples is markedly reduced
(Fig. 11b), while for TANOVA, with smaller epoch
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Figure 8: CDR SnPM results for the 40 Hz low-pass filtered CPT dataset. Red waveforms are p-Values
depicted in a logarithmic scale, and white areas indicate significance, with p < a. Short hatched gray
areas indicate significance but failure to establish significance of consecutive rejections. The significance
level a = 0.0163 is visualized as a horizontal red dotted line. Rows 1 and 2 show consistency test results
for target and distractor stimuli, respectively. Black waveforms are the maximum t-values, scaled equally.
Row 3 illustrates differences between targets and distractors. Here, the black waveform represents maxi-
mum F-values. The numbers in the upper right corners of each waveform are the numerical values of that
waveform for the 300 ms time point, indicated by a dotted vertical line.

counts, more pre-stimulus samples were found sig-
nificant. A significant difference for the 300 ms
latency cannot be established.

Discussion

For the simulated dataset, TANOVA identified la-
tencies of consistency within epoch type for the
“dipole+noise” epochs, while for the “noise”-only
epochs just the expected number of false pos-
itives was reported, none of which passed the
test for contiguous rejections of the Null hypothe-
sis. Latencies with significant differences between
epoch types agreed with latencies where the SNR

of the first principal component of the averaged
“dipole+noise” epochs exceeded 1.

CDR SnPM, when applied to the simulated
dataset, highlighted two distinct brain regions of
significant differences, one of them in the post-
central gyrus area showing hyper-activity, the
other in the frontal lobe area with hypo-activity,
due to the sharper fall-off beyond the maxima of
sLORETA activity for the “dipole+noise” epochs
as compared to the “noise”-only epochs where the
smoothing-effect of regularization dominates the
sLORETA images due to lack of features in the
data.
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Figure 9: CDR SnPM F-values for the 40 Hz low-pass filtered CPT dataset. Thumbnails show template
MRI slices ordered from top to bottom, with labels indicating axis orientations where A represents ante-
rior, P posterior, L left, and R right. Red-yellow colored overlays are the significance-thresholded F-value
image for the 300 ms latency.

The sensitivity of CDR SnPM was lower com-
pared to TANOVA, which can be seen from the
later onset of the respective periods of significant
latencies in the difference tests. The maximum
statistic used in CDR SnPM summarizes the indi-
vidual voxel statistics into a single measure, thus
addressing the spatial multiple comparison prob-
lem while at the same time retaining spatial res-
olution. Nichols and Holmes (2002) describe a
tradeoff between statistical power and the abil-
ity to localize significant voxels. Thus, the lower
sensitivity of SnPM as compared to TANOVA,
which employs an omnibus measure to summa-
rize map topography, may be explained. Further-
more, scalp topography maps contain information
about source orientation, while the voxel intensi-
ties analyzed in CDR SnPM do not. It is beyond
the scope of this paper to clarify whether the dif-
ferences in statistical outcome between TANOVA

and CDR SnPM observed here are due to the
transition to source space, the representation of
source activity as absolute values, or the maxi-
mum statistic employed to elicit locations of sig-
nificance. It should be noted, however, that the
outcome of sLORETA source localization are not
oriented sources but voxel intensities. Rather,
sLORETA was chosen because of its low local-
ization error, its uniform spatial sensitivity due to
the inherent normalization to the standard devia-
tion per voxel, and because its outcome has been
shown to be robust with respect to changes in
the regularization parameter. The spatial resolu-
tion to be expected from CDR SnPM depends on
the underlying source analysis method, with “low
resolution” even a part of the sLORETA acronym.
When just a representation of significant peaks as
source images is required – as opposed to estab-
lishing significance for certain source locations – a
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(a) Unfiltered dataset.

(b) 10 Hz low-pass filtered dataset.

Figure 10: Comparison of difference test results for the unfiltered and 10 Hz low-pass filtered simulated
datasets. Red waveforms are p-Values depicted in a logarithmic scale, and white areas indicate signifi-
cance, with p < a. Short hatched gray areas indicate significance but failure to establish significance of
consecutive rejections. The significance levels a are visualized as horizontal red dotted lines. Row 1
shows TANOVA results. Row 2 shows the SNR of the first principal component, where white areas mark
SNRs � 1. Row 3 are CDR SnPM results, where the black waveform represents maximum F-values.
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(a) Differently filtered datasets. (b) Different epoch counts.

Figure 11: Number of significant samples for the TANOVA and CDR SnPM difference tests for a) differ-
ently filtered datasets and b) different epoch counts.

dipole or current density analysis of the samples-
of-significance identified by TANOVA would be an
alternative strategy to CDR SnPM.

The visual CPT data showed sufficient consis-
tency within stimulus type to warrant a compari-
son of the different stimulus types. The TANOVA
method, which processes complete voltage to-
pography maps, detected significant differences
between stimulus types for more latencies than
the CDR SnPM method. TANOVA uses an om-
nibus measure of map topographies for establish-
ing significance, with the consistency test Null
hypothesis that random maps have been mea-
sured. There are certainly situations, where, even
without stimulus-related brain activity, map to-
pographies are not completely random. Examples
would be subjects with strong alpha in a group
of posterior electrodes or residual muscle spiking
in temporal electrodes, which may both show up
as significant consistencies. The TANOVA con-
sistency test should therefore not be seen as an
indication of proper artifact reduction or removal.

In the case of the CPT data, when looking at the
TANOVA consistency test results and also at the
difference tests for small epoch counts, significant
pre-stimulus latencies can be observed. Without
ISI randomization, it is common for slow effects to
show up as consistent signals in the pre-stimulus
latencies. Even with ISI randomization, as used
in this study, such effects may not be totally sup-
pressed, especially for the Bereitschaftspotential
(Gladwin, Lindsen, & Jong, 2006). Furthermore,
an amplifier-side 0.15 Hz high-pass filter was used
in this study, while a comparison of the differ-
ently filtered datasets showed how, with increas-
ing high-pass filter frequencies, the number of pre-
stimulus significances became smaller, indicating
the additional possibility of dispersion caused by
low-frequency high-pass filtering, of which the
commonly used baseline correction is just a spe-
cial case.

CDR SnPM was able to extract brain locations
with significantly different sLORETA activations
between target and distractor stimuli. The time
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(a) TANOVA.

(b) CDR SnPM: black waveforms represent maximum F-values.

Figure 12: Comparison of dif-
ference test results for the dif-
ferently filtered CPT datasets.
Red waveforms are p-Values
depicted in a logarithmic scale,
and white areas indicate sig-
nificance, with p < a. Short
hatched gray areas indicate sig-
nificance but failure to estab-
lish significance of consecu-
tive rejections. The signif-
icance levels a are visual-
ized as horizontal red dotted
lines. a) TANOVA b) CDR
SnPM: black waveforms repre-
sent maximum F-values.
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(a) TANOVA .

(b) CDR SnPM: black waveforms represent maximum F-values

Figure 13: Comparison of dif-
ference test results for different
epoch counts of the 40 Hz low-
pass filtered CPT dataset, with
consecutive rows showing re-
sults for all, 75 %, 50 %, and
25 % of epochs used for the
analysis. Red waveforms are
p-Values depicted in a logarith-
mic scale, and white areas indi-
cate significance, with p < a.

Short hatched gray areas indi-
cate significance but failure to
establish significance of con-
secutive rejections. The signif-
icance level a = 0.0163 is vi-
sualized as horizontal red dot-
ted lines. a) TANOVA b) CDR
SnPM: black waveforms repre-
sent maximum F-values.
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ranges and brain regions uncovered for the 300 ms
latency are consistent with what is known about
the P300, with frontocentral and posterior right
hemisphere differences (Bledowski et al., 2004).
The results of CDR SnPM consistency tests are
of limited value beyond establishing that the un-
derlying source images are suited for difference
testing, as they show consistency for nearly all
samples. This can be an effect of regularization,
which for noisy data produces smooth source im-
ages of small amplitude, which are then amplified
by normalization.

Filtering EEG data is a well-established tech-
nique for changing waveform morphology in such
a way as to accent characteristic peaks for visual
inspection, or to enhance SNR by low-pass filter-
ing the data. With the low-pass filtered simulated
dataset and temporal multiple comparison correc-
tion, the effects of this SNR enhancement are
clearly visible. Significance could be established
for earlier latencies with smaller dipole activity as
for the unfiltered simulated data. This is corrobo-
rated by the very similar latencies where the SNR
of the first principal component exceeded 1. In
general, however, filtering disseminates signal en-
ergy onto nearby samples and can potentially im-
pair features in the data that may be crucial for
establishing significance. While TANOVA results
were less affected by filtering, CDR SnPM seems
to work best on slightly or unfiltered data. For the
CPT dataset analyzed in this study, epoch counts
of 125 and higher produced more significant sam-
ples than epoch counts of 83 and lower. One
possible extrapolation of this observation is, that
the number of epochs generally accepted as suf-
ficient for creating average ERPs is also sufficient
for performing TANOVA and SnPM analyses.

The proposed method for multiple comparison
correction in the time domain uses the ratio be-

tween twice the maximum frequency in the data
and the sampling rate as its comparison count
parameter. A corrected significance threshold
is used if this ratio is smaller than one, lead-
ing to higher numbers of required repetitions and
longer computation times. The question of how
to choose or estimate the maximum frequency re-
mains to be discussed. If data have previously
been filtered, as is the case in most ERP/ERF
studies, an upper limit for the maximum fre-
quency is certainly given by the low-pass filter
frequency and transition width. As the observed
brain processes might work on even slower scales,
it becomes clear that this is by no means a con-
servative method for multiple comparison correc-
tion. However, it accounts at least for the com-
mon practice of recording data at 1 or 2 kHz but
later low-pass filtering to some 40 or 70 Hz, which
effectively reduces environmental noise. Conse-
quently, in this paper only the low-pass filter fre-
quency was used for determining the significance
threshold.

Conclusion

It was shown how TANOVA and CDR SnPM can
be applied to the individual epochs obtained in an
ERP experiment. The TANOVA analysis estab-
lished data plausibility and identified latencies-of-
interest for further analysis. The SnPM analysis,
in addition, identified brain regions of consistent
activity within stimulus type and of significantly
different activity between stimulus types.

Obviously, the approach presented here is not
limited to EEG data analysis but can also be per-
formed on MEG data. It can easily be extended
to group or longitudinal studies. In some cases,
it is then necessary to shuffle within-subject only.
For group or longitudinal studies, either individ-
ual averages per stimulus type can be processed,
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or all acquired epochs of all datasets. Further-
more, SnPM can be employed to identify sig-
nificant channels when performed on voltage to-
pographies instead of source distributions.
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